FULLY WORKED SOLUTIONS

Context 7: The physics of music

Chapter 17: Sound thinking

Chapter questions

 $v = 3900 \text{ m s}^{-1}, \lambda = 6 \text{ m}$ 1.

$$f = v/\lambda = 3900/6 = 650 \text{ Hz}$$

2.
$$f = 512 \text{ Hz}$$

The frequency will be the same, so f = 512 Hz(a)

(b)
$$v = 5170 \text{ m s}^{-1}, f = 512 \text{ Hz}$$

 $\lambda = v/f = 5170/512 = 10.1 \text{ m}$

3. (a)
$$T = -5 \,^{\circ}\text{C}$$

 $v = 331\sqrt{\frac{-5}{273} + 1} = 328 \,\text{m}\,\text{s}^{-1}$

(b)
$$T = 40 \text{ °C}$$

 $v = 331\sqrt{\frac{40}{273} + 1} = 354 \text{ m s}^{-1}$

4.
$$I \propto \frac{1}{d^2}$$

6.

7.

$$\frac{I_2}{I_1} = \frac{d_1^2}{d_2^2}$$

$$I_1 = 4 \text{ W m}^{-2}, I_2 = 1 \text{ W m}^{-2}, d_1 = 2 \text{ m}$$

$$\frac{1}{4} = \frac{2^2}{d_2^2}$$

$$d_2^2 = 16$$

$$d_2 = 4 \text{ m}$$
5. $I = P/A$

$$I = E/tA$$

$$E/A = It = 0.2 \times 10^{-3} \times 20 = 4 \times 10^{-3} \text{ J m}^{-2}$$
6. $P = I \times 4\pi d^2 = 2 \times 10^{-3} \times 4\pi \times 3^2$

$$P = 0.23 \text{ W}$$
7. $L = 10 \log I/I_0$

$$20 = 10 \log I/10^{-12}$$

$$2 = \log I/10^{-12}$$

$$10^{2} = I/10^{-12}$$

$$I = 10^{-10} \text{ W m}^{-2}$$
8. $L = 10 \log I/I_{0}$

$$I/I_{0} = 10^{L/10}$$

$$I = 10^{L/10} \times 10^{-12} = 10^{L/10-12}$$
For a scream: $L = 120 \text{ dB}$

$$I_{\text{scream}} = 10^{(120/10)-12} = 10^{\circ} = 1 \text{ W m}^{-2}$$
For normal conversation: $L = 60 \text{ dB}$

$$I_{\text{conversation}} = 10^{(60/10)-12} = 10^{-6} \text{ W m}^{-2}$$

$$\frac{I_{\text{scream}}}{I_{\text{conversation}}} = \frac{1}{10^{-6}} = 10^{6}$$
9. $L = 10 \log I/I_{0}$

$$L = 10 \log (1000 I_{0}/I_{0})$$

$$= 10 \log 1000$$

$$= 30 \text{ dB}$$

Review questions

- (a) $\sim 6000 \text{ Hz}$
- (b) ~ 78 dB
- (c) below 20 Hz
- (d) $\sim 1400~\text{Hz}$ to 7 500 Hz
- (e) \sim 45 Hz to 100 Hz, 8000 Hz to 15 000 Hz

7. $\lambda = 1.5 \text{ m}, d_1 = 4.5 \text{ m}$

At a minimum position, the difference between path lengths Δd must be a whole number multiple of $\frac{\lambda}{2}$. In this case, where the distance from the second speaker must be at least that from the first speaker:

$$\Delta d = d_2 - d_1 = \frac{n\lambda}{2}$$
 where $n = 1, 2, 3...$

The smallest value of *n* for which this occurs is n = 1.

Therefore,

$$d_2 - 4.5 = \frac{1.5}{2} = 0.75 \text{ m}$$

$$d_{2} = 0.75 + 4.5 = 5.25 \text{ m}$$
8. $I = 10^{-8} \text{ W m}^{-2}, I_{0} = 10^{-12} \text{ W m}^{-2}$
 $L = 10 \log \left(\frac{I}{I_{0}}\right) = 10 \log \left(\frac{10^{-8}}{10^{-12}}\right)$
 $= 40 \text{ dB}$
9. $L = 65 \text{ dB}, I_{0} = 10^{-12} \text{ W m}^{-2}$
 $L = 10 \log \left(\frac{I}{I_{0}}\right)$
 $65 = 10 \log \left(\frac{I}{10^{-12}}\right)$
 $6.5 = \log \left(\frac{I}{10^{-12}}\right)$
 $10^{6.5} = \left(\frac{I}{10^{-12}}\right)$
 $I = 10^{6.5} \times 10^{-12}$
 $I = 3.2 \times 10^{-6} \text{ W m}^{-2}$

10.
$$L = 100 \text{ dB}, I_0 = 10^{-12} \text{ W n}$$

$$L = 100 \text{ dB}, I_0 = 10^{-12} \text{ W m}^{-2}$$

$$100 = 10 \log \left(\frac{I}{10^{-12}}\right)$$

$$10 = \log \left(\frac{I}{10^{-12}}\right)$$

$$10^{10} = \left(\frac{I}{10^{-12}}\right)$$

$$I = 10^{10} \times 10^{-12} = 10^{-2} \text{ W m}^{-2}$$

$$P = 4\pi d^2 I = 4\pi \times 10^2 \times 10^{-2}$$

$$P = 12.6 \text{ W}$$

Percentage converted $=\frac{12.6}{20} \times 100\% = 63\%$

11. (a)
$$T = 30 \,^{\circ}\text{C}$$

$$v_{\rm T} = 331 \sqrt{\frac{T}{273} + 1}$$

= 331 $\sqrt{\frac{30}{273} + 1}$
= 349 m s⁻¹

 $d = v_T t = 349 \times 7 = 2.4$ km (b)

12. Total distance travelled = 2dt = 0.17 s, v = 1540 m s⁻¹ $2d = vt = 1540 \times 0.17 = 261.8 \text{ m}$ *d* = 131 m

13.
$$v_{20} = 344 \text{ m s}^{-1}, \lambda = 0.800 \text{ m}$$

 $f = \frac{v}{\lambda} = \frac{344}{0.8} = 430 \text{ Hz}$
(a) $f = 430 \text{ Hz}, v_{\text{iron}} = 5 120 \text{ m s}^{-1}$
 $\lambda = \frac{v}{f} = \frac{5120}{430} = 11.9 \text{ m}$
(b) $f = 430 \text{ Hz}, v_{\text{seawater}} = 1 540 \text{ m s}^{-1}$
 $\lambda = \frac{v}{f} = \frac{1540}{430} = 3.6 \text{ m}$
(c) $f = 430 \text{ Hz}, v_{\text{pure water}} = 1 498 \text{ m s}^{-1}$
 $\lambda = \frac{v}{f} = \frac{1498}{430} = 3.5 \text{ m}$
14. distance $= 2d, t = 2.8 \text{ s}, v = 344 \text{ m s}^{-1}$
 $2d = vt = 344 \times 2.8 = 963 \text{ m}$
 $d = 481.6 \text{ m} \approx 482 \text{ m}$
15. (a) $T = 1.5 \text{ ms} = 1.5 \times 10^{-3} \text{ s}$
(b) $f = 1/\text{T} = \frac{1}{1.5 \times 10^{-3}} = 667 \text{ Hz}$
(c) $\lambda = \frac{v}{f} = \frac{344}{667} = 0.52 \text{ m}$
16. As $I \propto \frac{1}{A}, \frac{I_{\text{cardrum}}}{I_{\text{cardrum}pet}} = \frac{A_{\text{cardrum}pet}}{A_{\text{cardrum}}}$
 $A_{\text{cardrum}pet} = \pi \times (7.5)^2 = 177 \text{ cm}^2$
 $A_{\text{cardrum}} = 0.5 \text{ cm}^2$
 $\frac{I_{\text{cardrum}}}{I_{\text{cardrum}}} = \frac{A_{\text{cardrum}}}{0.5} = 88.5$

The ear trumpet increases the intensity of the sound by a factor of 88.5.

17.
$$v = \frac{d}{t} = \frac{400}{12} = 333 \text{ m s}^{-1}$$

 $v_{T} = 331 \sqrt{\frac{T}{273} + 1}$
 $333 = 331 \sqrt{\frac{T}{273} + 1}$
 $1.014 = \frac{T}{273} + 1$
 $T = (1.014 - 1) 273 = 3.9 ^{\circ}\text{C}$

18.
$$T_{\rm k} = T_{\rm c} + 273$$
$$T_{\rm 1} = 18 + 273 = 291 \text{ K}$$
$$T_{\rm 2} = 0 + 273 = 273 \text{ K}$$
$$v_{\rm 2} = 1 \ 284 \text{ m s}^{-1}$$
$$\frac{v_{\rm 1}}{v_{\rm 2}} = \sqrt{\frac{T_{\rm 1}}{T_{\rm 2}}}$$
$$v_{\rm 1} = v_{\rm 2} \sqrt{\frac{T_{\rm 1}}{T_{\rm 2}}}$$
$$= 1284 \sqrt{\frac{291}{273}}$$
$$v_{\rm 1} = 1326 \text{ m s}^{-1}$$
$$20. \qquad L_{\rm Al} = L_{\rm Cu}$$

 $v_{Al} = 5\ 100 \text{m s}^{-1}, v_{Cu} = 3\ 900 \text{ m s}^{-1}$ L = vt for both metals, so $L_{Al} = v_{Al}t_{Al}$ and $L_{Cu} = v_{Cu}t_{Cu}$ As $L_{Al} = L_{Cu}$, $v_{Al}t_{Al} = v_{Cu}t_{Cu}$ Also, as $t_{Cu} = t_{Al} + 0.0003$ $v_{Al}t_{Al} = v_{Cu}(t_{Al} + 0.0003)$ $5100t_{Al} = 3900t_{Al} + 1.17$ $1200t_{Al} = 1.17$ $t_{Al} = 0.975 \text{ ms}$ $L = v_{Al}t_{Al} = 5\ 100 \times 9.75 \times 10^{-4} = 4.97 \text{ m} \approx 5 \text{ m}$

	$v_{\rm T} = 331 \sqrt{\frac{T}{273} + 1}$	$v_{\rm T} = 331 + 0.60 T$
<i>T</i> (°C)	(m s ⁻¹)	(m s ⁻¹)
-50	299	301
-30	312	313
-10	325	325
0	331	331
10	337	337
30	349	349
50	360	361

70	371	373

The equations give the same values for v_T in the range between -10 °C and 30 °C. At the extremes of the range, they differ only to within 0.7%.